

Incremental Sampling Methodology, Growing into an Everyday Tool

Mark Bruce, Michele Zych, Hayley Brittingham, Kelly Black

August 10, 2020

Copyright © 2020, All rights reserved.

Managing Uncertainty

ISM is		•▲	•▲	•▲	•▲			•▲	
designed to	•	●▲	⋴▲	•	●▲	●▲	●▲	•▲	•
reduce uncertainty	•	•	•	•	•	•	•	•	•
in the		•	•	●▲	•	•▲	•▲	●▲	●▲
in the	•	•	•	•	•	•	•	•▲	•
knowable unknowns	Increme collecti Processing Subsamplin	ent on ng							
					U				
N PTUNE COMPANY	wood.			🛟 eurofins 🛛 2					

Representative by Design

Incremental Sampling Methodology (ISM)

Sampling (and sample processing) method used to provide representative site data to inform environmental characterization and cleanup decisions.

Assess the mean concentration of the contaminants of concern within a defined portion of the site by managing heterogeneity

Heterogeneity at all scales

4

Key Terms

Decision Unit (DU) is the smallest volume of soil for which a decision will be made based on ISM sampling. It is the area and depth of soil from which mean analyte concentrations are obtained and is representative of a specifically defined population.

An increment is a specified volume of soil collected from a specific point within a DU. Multiple increments (typically 30 or more) are collected from a specified DU and combined into a single sample that is typically designed to represent the entire DU.

Regulatory Acceptance

> 60% of States reporting use of ISMMany states have official ISM guidance

~ 50,000 participants in ITRC ISM training since 2012

ITRC ISM-1 2012 guidance being updated for 2020 state regulators, federal, community, academic, industry

Look for ISM-2 in Fall 2020

ISM Applications

Media:

Surface soil, subsurface, sediment and piles

Contaminants:

Metals, SVOCs, PCBs, pesticides, VOCs, TPH, dioxins, explosives, cyanide, perchlorate and PFAS

ISM Applications

<u>Assessments</u>:

Site screening, nature and extent, confirmation sampling,

risk assessment, waste characterization,

background characterizations

Decisions: by comparison to:

Regulatory cleanup levels, screening levels,

human and ecological risk-based criteria,

background concentrations.

ISM addresses the two weak links common in soil studies:

Lab subsampling

Small Scale Heterogeneity

Spills flow around bumps unevenly depositing liquids

Representation always relates to a specific question about a population with a given level of confidence.

A sample that is representative for one question might not be representative for a different question.

Managing Heterogeneity

Small-scale heterogeneity in the field

use many increments within a decision unit to provide

good spatial coverage

4	4						4		4
				•					
•	4	•	•	•	•	•	•	•	
•	A	•	•	•	•	•		A	
4	A								

Micro scale heterogeneity at the laboratory

variety of sample processing techniques to produce more

consistent subsamples.

Statistical Concepts

Central Limit Theorem (CLT), distribution of the average is approximately normally distributed, regardless of the distribution of the concentration in the increments

95% upper confidence limit (UCL) is typically used as a conservative estimate of the mean

Positively skewed environmental data

More samples with smaller concentrations

Fewer samples with larger concentrations

Compensate with more samples/increments to avoid under estimate

Planning Use of ISM Data

Specify how data will be analyzed in sampling design

Examples

Compare UCL to screening level

Compare site concentration to background

Define tolerable decision error rate

Helps define

number of samples and increments

size and location of decision units

QA/QC criteria (and response if not met)

Cost-benefit ratio favors ISM.

It results in fewer decision errors

ISM provides higher confidence in cleanup decisions

Effective use of funds to address actual environmental impacts

ISM also reduces overly conservative decisions

- Lead to multiple investigations
- **Project delays**
- Expense to implement the wrong remedial action
- Increased liability for the responsible party

Factors Affecting ISM Cost

Size of the property

Nature and extent of the contamination

Site characteristics Soil type Vegetation Depth of sample collection Number of decision units, replicates, increments Use of field analytical methods for specific contaminants

Sampling processing techniques

Individual analyte analysis costs

Cost Comparison

ITRC ISM-2 worksheet

"Ball Park" cost estimates costs

ISM samples vs discrete samples

Common scenarios

Screening assessment

Nature and extent of surface spill

Confirmation sampling from an excavation

Stockpile characterization

Systematic Planning and Decision Unit Design

Understanding of the data quality objectives (DQOs)

- Source area investigation
- **Evaluation of contaminant fate and transport**

Assessment of potential exposure and risks

Use DQOs and CSM to drive

selection of size, shape,

location, depth and # of DUs

Decision Unit Design

Exposure area DUs for risk assessments and risk-based decisions

Residential lot (e.g. 1/4 acre) Industrial receptors (e.g. 1 acre)

DUs for a frog smaller than for waterfowl

If multiple species of interest

DU sizes based on the smallest home range then aggregated for analysis for larger home ranges

Decision Unit Design

Determine the nature and extent of contamination

DUs may be in rings or layers from the source area

Portable x-ray fluorescence (XRF) or gas chromatograph help define DU boundaries

Example: XRF lead results help define front yard DUs

Field Implementation & Sample Collection

- **Special considerations**
 - **Field personnel training**
 - understanding sampling objectives & procedures
 - **Preexisting site conditions**
 - **Surface features**
 - **Soil characteristics**
 - **Determine number and location of increments**

Estimate Sample Mass

Sufficient for tests

Facilitate DU representativeness

Mass of sample (1-2 kg most common size)

Number of increments (equal volume)

Depth (length)

Diameter

Soil density

Moisture content

NAND COMPANY

Sample Collection

Common practice

One person collects the sample increment

Second person

Manages sample container(s) (triplicates?)

Tracks the number of increments collected

⇒ 😵 ⇒ 🚺 → Ⅲ →

⇒∰⇔∬+∰→¤ ⇒∰⇒≬∥→∭→®

Sampling for VOCs

Scaled up methanol preservation option Method 5035

Large methanol bottle

1 per DU, > 30 mL methanol restricted to ground shipping

Medium methanol bottles several per DU 25 mL methanol air shipment OK

Decision Unit Designation

Rectangular DU marked by corners

Other shapes or uneven terrain benefit from GPS

Not necessary to record exact increment locations

Sample Processing

Multiple sample processing options and combinations to be selected based on the site characterization objectives

Five areas:

Soil moisture management Disaggregation Particle size selection Particle size reduction Subsampling

New Lab Tools

Data Quality Evaluation

Data verification ensure the data are complete

Data validation assesses the data on a per-sample basis,

Examine qualifiers Evaluate performance criteria Reject data unfit for use in decision making Reporting limits vs sensitivity needs Reasonableness of measured values relative to CSM, note anomalies

Data Analysis

Estimate of mean Single result Mean of replicates 95% UCL

Can't pool data from ISM and discrete

Can qualitatively combine as multiple lines of evidence

Compare UCL, LCL and action level

Conclusions

ISM improves data quality and reduces uncertainty in data-based decisions

Effective management of heterogeneity

Increased representativeness

Reduced variability

Conclusions

Microscopic

⇒ 🔣 ⇒ 🚺 → 🛄 → 📼

Questions & Contacts

Contact information

Mark Bruce – <u>mark.bruce@eurofinset.com</u>

Michele Zych - <u>michele.zych@woodplc.com</u>

Hayley Brittingham - <u>hbrittingham@neptuneinc.org</u>

